High quality-factor optical nanocavities in bulk single-crystal diamond.

نویسندگان

  • Michael J Burek
  • Yiwen Chu
  • Madelaine S Z Liddy
  • Parth Patel
  • Jake Rochman
  • Srujan Meesala
  • Wooyoung Hong
  • Qimin Quan
  • Mikhail D Lukin
  • Marko Lončar
چکیده

Single-crystal diamond, with its unique optical, mechanical and thermal properties, has emerged as a promising material with applications in classical and quantum optics. However, the lack of heteroepitaxial growth and scalable fabrication techniques remains the major limiting factors preventing more wide-spread development and application of diamond photonics. In this work, we overcome this difficulty by adapting angled-etching techniques, previously developed for realization of diamond nanomechanical resonators, to fabricate racetrack resonators and photonic crystal cavities in bulk single-crystal diamond. Our devices feature large optical quality factors, in excess of 105, and operate over a wide wavelength range, spanning visible and telecom. These newly developed high-Q diamond optical nanocavities open the door for a wealth of applications, ranging from nonlinear optics and chemical sensing, to quantum information processing and cavity optomechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High quality factor nanophotonic resonators in bulk rare-earth doped crystals.

Numerous bulk crystalline materials exhibit attractive nonlinear and luminescent properties for classical and quantum optical applications. A chip-scale platform for high quality factor optical nanocavities in these materials will enable new optoelectronic devices and quantum light-matter interfaces. In this article, photonic crystal nanobeam resonators fabricated using focused ion beam milling...

متن کامل

Integrated high-quality factor optical resonators in diamond.

The realization of an integrated diamond photonic platform, based on a thin single crystal diamond film on top of a silicon dioxide/silicon substrate, is reported. Using this approach, we demonstrate high-quality factor single crystal diamond race-track resonators, operating at near-infrared wavelengths (1550 nm). The devices are integrated with low-loss diamond waveguides terminated with polym...

متن کامل

Quality Factor Enhancement of Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators

In this paper, a channel drop ring resonator filter based on two dimensional photonic crystal is proposed which is suitable for all optical communication systems. The multilayer of silicon rods in the center of resonant ring enables one to adjust resonant wavelength of the ring and enhance power coupling efficiency between ring and waveguide. Refractive index and radius of multilayer rods insid...

متن کامل

Near-field scanning optical microscopy of photonic crystal nanocavities

Near-field scanning optical microscopy was used to observe high-resolution images of confined modes and photonic bands of planar photonic crystal ~PPC! nanocavities fabricated in active InGaAsP material. We have observed the smallest optical cavity modes, which are intentionally produced by fractional edge dislocation high-Q cavity designs. The size of the detected mode was roughly four by thre...

متن کامل

Optical design of split-beam photonic crystal nanocavities.

We design high-quality-factor photonic crystal nanobeam cavities formed by two mechanically isolated cantilevers. These "split-beam" cavities have a physical gap at the center, allowing mechanical excitations of one or both of the cavity halves. They are designed by analyzing the optical band structures and mode profiles of waveguides perforated by elliptical holes and rectangular gaps and are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature communications

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014